Search results for "Partially hyperbolic diffeomorphisms"

showing 3 items of 3 documents

Seifert manifolds admitting partially hyperbolic diffeomorphisms

2017

We characterize which 3-dimensional Seifert manifolds admit transitive partially hyperbolic diffeomorphisms. In particular, a circle bundle over a higher-genus surface admits a transitive partially hyperbolic diffeomorphism if and only if it admits an Anosov flow.

Surface (mathematics)Pure mathematicsMathematics::Dynamical SystemsCircle bundle[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)01 natural sciences[MATH.MATH-GN]Mathematics [math]/General Topology [math.GN]0103 physical sciencesFOS: MathematicsMSC: Primary: 37D30 37C15; Secondary: 57R30 55R05.Mathematics - Dynamical Systems0101 mathematicsMathematics::Symplectic GeometrySeifert spacesMathematics - General TopologyMathematicsTransitive relationAlgebra and Number TheoryApplied Mathematics010102 general mathematicsGeneral Topology (math.GN)Mathematics::Geometric TopologyFlow (mathematics)Partially hyperbolic diffeomorphisms010307 mathematical physicsDiffeomorphismAnalysis
researchProduct

Anomalous partially hyperbolic diffeomorphisms I: dynamically coherent examples

2016

We build an example of a non-transitive, dynamically coherent partially hyperbolic diffeomorphism $f$ on a closed $3$-manifold with exponential growth in its fundamental group such that $f^n$ is not isotopic to the identity for all $n\neq 0$. This example contradicts a conjecture in \cite{HHU}. The main idea is to consider a well-understood time-$t$ map of a non-transitive Anosov flow and then carefully compose with a Dehn twist.

Pure mathematicsFundamental groupMathematics::Dynamical SystemsGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]MSc: 37D30[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)01 natural sciencesIdentity (music)Exponential growth0103 physical sciencesFOS: MathematicsMathematics - Dynamical Systems0101 mathematicsMathematicsConjecture010102 general mathematicsClassificationMathematics::Geometric TopologyDehn twistFlow (mathematics)Partially hyperbolic diffeomorphisms010307 mathematical physicsDiffeomorphism
researchProduct

Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence

2020

Let $M$ be a closed 3-manifold which admits an Anosov flow. In this paper we develop a technique for constructing partially hyperbolic representatives in many mapping classes of $M$. We apply this technique both in the setting of geodesic flows on closed hyperbolic surfaces and for Anosov flows which admit transverse tori. We emphasize the similarity of both constructions through the concept of $h$-transversality, a tool which allows us to compose different mapping classes while retaining partial hyperbolicity. In the case of the geodesic flow of a closed hyperbolic surface $S$ we build stably ergodic, partially hyperbolic diffeomorphisms whose mapping classes form a subgroup of the mapping…

Pure mathematics37D30Similarity (geometry)Mathematics::Dynamical SystemsGeodesic[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)dynamical coherenceMSC Primary: 37C15 37D3037C1501 natural sciencessymbols.namesake0103 physical sciencesFOS: MathematicsErgodic theoryMathematics - Dynamical Systems[MATH]Mathematics [math]0101 mathematicsComputingMilieux_MISCELLANEOUSMathematicsConjecture010102 general mathematicsSurface (topology)Mathematics::Geometric Topologystable ergodicityMapping class groupFlow (mathematics)Poincaré conjecturesymbols010307 mathematical physicsGeometry and Topologypartially hyperbolic diffeomorphisms
researchProduct